Modeling and Simulation of Wireless Link Quality (ETT) Through Principal Component Analysis of Trace Data

Anh Le, Prashant Krishnamurthy, David Tipper, Konstantinos Pelechrinis

Graduate Telecommunications and Networking Program, University of Pittsburgh

PE-WASUN 2011
Outline

1. Introduction
2. Approach
3. Per-node Analysis
4. Network-wide Analysis
5. Simulating ETT Values
6. Conclusion
What is Expected Transmission Time (ETT)?

$$ETT = \frac{PacketSize}{Bandwidth} \times \frac{1}{(1 - p_f)(1 - p_r)}$$

- $p_f = 0.2$
- $p_f = 0.1$

- Used as a metric for wireless link quality
- No trivial way to simulate ETT values

What is Principal Component Analysis (PCA)?

- A matrix decomposition method, used widely in machine learning to reduce dimension of data

Our Goal: Build a model for ETT simulation

Our Approach: Using PCA to analyze captured ETT values from a real wireless network
The ETT trace was collected at UCSB wireless mesh network
- 802.11a/b
- 19 nodes, 192 links
- located on 5 floors of a building

There are 3 datasets collected at different times.

Preprocessing:
- Convert from raw data to a set of matrices containing ETT values
- Get rid of loss data: use largest continuous block
- Averaging with a window size of 10min
Outline

1 Introduction

2 Approach

3 Per-node Analysis

4 Network-wide Analysis

5 Simulating ETT Values

6 Conclusion
Apply PCA to ETT traces

At each node of the network, we have: $X \approx F \times B$

$X_i = \sum_{j=1}^{k} F_{i,j} \times B_j$

$C(n \times n) = \text{cov}(D)$

$W(m \times n) = \text{eigvec}(C)$

$G(n \times k):$ first k columns of W

$E = D \times G$

coefficients of link i

basis vectors
Choosing k

We define two indicators to estimate the amount of information lost:

- **Coverage α** is defined as the cumulative sum of the selected normalized eigenvalues

$$\alpha = \sum_{u=1}^{k} V[u] / \sum_{u=1}^{n} V[u]$$

- **Loss β** is the significance of the last selected eigenvalue

$$\beta = V[k] / V[1]$$

If we can choose k to be significantly smaller than n (while we still have large coverage α and small loss β), then we can efficiently represent the matrix X.
Approximation results for $k = 2$

Node 4 as an example ($\alpha = 98\%, \beta = 2.5\%$): (a) Original ETT trace (b) After averaging ($T = 10$ min)

(c) Approximated ETT values before regression (d) Approximated ETT values after regression
Now, each link from this node can be expressed as a linear combination of two basis vectors \mathbf{B}_1 and \mathbf{B}_2.

(a) Basis vectors and (b) Final coefficients for Node 4. Links with similar dynamics are highlighted with red color.

The first basis vectors are quite stable, while the second basis vectors contain time-varying character.
Basis vectors from all nodes

(a) First and (b) second basis vectors from all nodes

- Most time variations are expressed by second basis vectors.
- First basis vectors have almost zero variance (over time)
- Second basis vectors have almost zero mean (over time)
The autocorrelation has small sidelobes and cross-correlation values are small. This supports our assumption about independence.
Distribution of Basis vector components

CDFs of first basis vectors at various nodes

CDFs of second basis vectors at various nodes

CDF for first basis vectors

CDF for second basis vectors

N(\(\mu = -0.17\), \(\sigma = 0.02\))

N(\(\mu = 0\), \(\sigma = 0.17\))

(a) CDFs of first basis vectors from different nodes (b) CDFs of second basis vectors from different nodes (c) Combined CDF of first basis vectors & fit (d) Combined CDF of second basis vectors & fit
Coefficients of all links

-45 -40 -35 -30 -25 -20 -15 -10 -5 0

Coordinates of all links

First coefficient
Second coefficient
 1st coef: $\mu = -10.43$ $\sigma = 8.21$
 2nd coef: $\mu = 0.13$ $\sigma = 1.16$
Distributrion of Coefficients

PDF for 1st coefficients
\[\text{ig}(\lambda=17.08, \mu=10.43, \sigma=8.15) \]

PDF for 2nd coefficients
\[\text{N}(\mu=0.13, \sigma=1.16) \]

Histogram of (a) all first coefficients (b) all second coefficients

Q–Q plot for 1st coefficients
\[\text{Quantile from InverseGaussian distribution} \]

Q–Q plot for 2nd coefficients
\[\text{Quantile from Standard Normal Quantiles} \]
Outline

1. Introduction
2. Approach
3. Per-node Analysis
4. Network-wide Analysis
5. Simulating ETT Values
6. Conclusion
We tried to apply the same PCA method to the entire set of ETT traces for all links (instead of only those associated with one node). However, with the same value of $k = 2$, we get only $\alpha = 93\%$ and $\beta = 1.6\%$.
Outline

1. Introduction
2. Approach
3. Per-node Analysis
4. Network-wide Analysis
5. Simulating ETT Values
6. Conclusion
Simulation procedure for each link

- Let $\rho = 0.7$ be the fraction of coefficients from the first group, $s = 0.2$ be the slope of the lines that form the triangular region; $L_m = -30, R_m = -12.5$ be the boundary for the first coefficient; $U_m = 5, D_m = -5$ be the boundary for the second coefficient.

- Generate a uniformly distributed random number x in $[0,1]$ for each link. If $x < \rho$ then we generate coefficients in the triangular region. Otherwise we generate coefficients in the rectangular region as follows.

 - Case 1 – triangular region: Generate f_1 uniformly distributed in $(R_m, 0)$. Calculate the range for f_2 as the segment of the vertical line at f_1 truncated by two lines. Let $f_{2D} = s \cdot f_1, f_{2U} = -s \cdot f_1$. Then generate f_2 that is uniformly distributed in (f_{2D}, f_{2U}).

 - Case 2 – rectangular region: Generate f_1 that is uniformly distributed in (L_m, R_m) and f_2 that is uniformly distributed in (D_m, U_m).

First cluster contains 70% of pairs and forms a triangular region

Second cluster contains 30% of pairs, which scatter between boundaries U_m, D_m, L_m, R_m
Simulated ETT values for a simple network

A simple network

Simulating ETT Values
Outline

1. Introduction
2. Approach
3. Per-node Analysis
4. Network-wide Analysis
5. Simulating ETT Values
6. Conclusion
Conclusion

We have shown that:

- PCA is very useful to reduce the size of ETT trace;
- We can efficiently approximate ETT data of all links at any node using only two basis vectors and two coefficients for each link;
- The first basis vector can be considered as a constant and the second as one derived from a normal distribution with a zero mean;
- The marginal distributions of coefficients corresponding to first basis vectors have an inverse Gaussian distribution, while those corresponding to second basis vectors have a nearly Gaussian distribution;
- It is possible to generate the ETT traces for a given network using our observations or with a combination of existing ETT trace data from that network using only a few parameters.
Open Issues and Future Work

- There are several assumptions that have not been tested carefully (e.g., independence)
- Analyzing the trace data without taking the average
- Try different datasets
- Compare with alternative approaches for analyzing and modeling the ETT traces
- Exploit spatial correlation between ETT values
Q & A