Topology-Related Modeling and Characterization of Wireless Sensor Networks

PE-WASUN’2011

Heitor S. Ramos1,2,4, Daniel Guidoni1, Eduardo F. Nakamura3, Azzedine Boukerche4, Alejandro C. Frery2, and Antonio A.F. Loureiro1

1Depart. of Comp. Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
2Institute of Computing, Federal University of Alagoas, Maceió, AL, Brazil
3FUCAPI, Manaus, AM, Brazil
4Diva Research Centre, University of Ottawa, Ottawa, ON, Canada

November 4, 2011
Motivation

- Node deployment, and the consequent induced topology, plays an important role in the design of wireless sensor networks.
- Homogeneous ad hoc networks suffer from fundamental limitations and, hence, exhibit poor network performance.
- Another class of WSN models assume that there are different sets of nodes, each one with different capabilities.
- For instance, suppose we have two sets of nodes: H-sensors and L-sensors.
- A homogeneous WSN becomes a particular case of a HSN.
- Energy hole happens in the neighborhood of each H-sensor.
Motivation

- Node deployment, and the consequent induced topology, plays an important role in the design of wireless sensor networks.
- Homogeneous ad hoc networks suffer from fundamental limitations and, hence, exhibit poor network performance.
- Another class of WSN models assume that there are different sets of nodes, each one with different capabilities.
- For instance, suppose we have two sets of nodes: H-sensors and L-sensors.
- A homogeneous WSN becomes a particular case of a HSN.
- Energy hole happens in the neighborhood of each H-sensor.
Introduction

Motivation

- Node deployment, and the consequent induced topology, plays an important role in the design of wireless sensor networks.
- Homogeneous ad hoc networks suffer from fundamental limitations and, hence, exhibit poor network performance.
- Another class of WSN models assume that there are different sets of nodes, each one with different capabilities.
 - For instance, suppose we have two sets of nodes: H-sensors and L-sensors.
 - A homogeneous WSN becomes a particular case of a HSN.
 - Energy hole happens in the neighborhood of each H-sensor.
Motivation

- Node deployment, and the consequent induced topology, plays an important role in the design of wireless sensor networks.
- Homogeneous ad hoc networks suffer from fundamental limitations and, hence, exhibit poor network performance.
- Another class of WSN models assume that there are different sets of nodes, each one with different capabilities.
- For instance, suppose we have two sets of nodes: H-sensors and L-sensors.
 - A homogeneous WSN becomes a particular case of a HSN.
 - Energy hole happens in the neighborhood of each H-sensor.
Motivation

- Node deployment, and the consequent induced topology, plays an important role in the design of wireless sensor networks.
- Homogeneous ad hoc networks suffer from fundamental limitations and, hence, exhibit poor network performance.
- Another class of WSN models assume that there are different sets of nodes, each one with different capabilities.
- For instance, suppose we have two sets of nodes: H-sensors and L-sensors.
- A homogeneous WSN becomes a particular case of a HSN.
- Energy hole happens in the neighborhood of each H-sensor.
Motivation

- Node deployment, and the consequent induced topology, plays an important role in the design of wireless sensor networks.
- Homogeneous ad hoc networks suffer from fundamental limitations and, hence, exhibit poor network performance.
- Another class of WSN models assume that there are different sets of nodes, each one with different capabilities.
- For instance, suppose we have two sets of nodes: H-sensors and L-sensors.
- A homogeneous WSN becomes a particular case of a HSN.
- Energy hole happens in the neighborhood of each H-sensor.
A stochastic point process is a probability law that describes the location of a number of points in a region of the space.

The most common model used in WSN simulation is the binomial, i.e., a fixed number of n points obeys a binomial distribution on $W = [0, \ell]^2 \subset \mathbb{R}^2$.

$2n$ independent identically distributed random variables $X_1, \ldots, X_n, Y_1, \ldots, Y_n$, obeying the uniform law on $[0, \ell]$, say $x_1, \ldots, x_n, y_1, \ldots, y_n$, and then placing the n points on coordinates $(x_i, y_i)_{1 \leq i \leq n}$.
A stochastic point process is a probability law that describes the location of a number of points in a region of the space.

The most common model used in WSN simulation is the binomial, i.e., a fixed number of n points obeys a binomial distribution on $W = [0, \ell]^2 \subset \mathbb{R}^2$.

$2n$ independent identically distributed random variables $X_1, \ldots, X_n, Y_1, \ldots, Y_n$, obeying the uniform law on $[0, \ell]$, say $x_1, \ldots, x_n, y_1, \ldots, y_n$, and then placing the n points on coordinates $(x_i, y_i)_{1 \leq i \leq n}$.
Stochastic Point Process

- A stochastic point process is a probability law that describes the location of a number of points in a region of the space.

- The most common model used in WSN simulation is the binomial, i.e., a fixed number of \(n \) points obeys a binomial distribution on \(W = [0, \ell]^2 \subset \mathbb{R}^2 \).

- \(2n \) independent identically distributed random variables \(X_1, \ldots, X_n, Y_1, \ldots, Y_n \), obeying the uniform law on \([0, \ell] \), say \(x_1, \ldots, x_n, y_1, \ldots, y_n \), and then placing the \(n \) points on coordinates \((x_i, y_i)_{1 \leq i \leq n} \).
Poisson Point Process

Definition

1. Number of points in every compact set $A \subset W$, denoted by $C(A)$ for “counts”, follows a Poisson distribution with mean $\lambda \mu(A)$

2. If A_1, A_2, \ldots, A_m are disjoint subsets of W, then $C(A_1), C(A_2), \ldots, C(A_m)$ are collectively independent random variables
Poisson Point Process

Definition

1. Number of points in every compact set $A \subset W$, denoted by $C(A)$ for “counts”, follows a Poisson distribution with mean $\lambda \mu(A)$

2. If A_1, A_2, \ldots, A_m are disjoint subsets of W, then $C(A_1), C(A_2), \ldots, C(A_m)$ are collectively independent random variables
Poisson Point Process

Definition

1. Number of points in every compact set $A \subset W$, denoted by $C(A)$ for “counts”, follows a Poisson distribution with mean $\lambda \mu(A)$

2. If A_1, A_2, \ldots, A_m are disjoint subsets of W, then $C(A_1), C(A_2), \ldots, C(A_m)$ are collectively independent random variables
\(M^2 P^2 \)

\(M^2 P^2(m, n, a, r_c, r_{ch}, r_i) \) on \(W \subset \mathbb{R}^2 \)

It is a compounded process consisting of:

- \(m \) samples of: \(H(m, 2r_i) \) (H-sensors).
- \(n - m \) samples of \(\Lambda(n - m, a, h) \) (L-sensors).
\(M^2P^2 \)

\(M^2P^2(m, n, a, r_c, r_{ch}, r_i) \) on \(W \subset \mathbb{R}^2 \)

It is a compounded process consisting of:

- \(m \) samples of: \(H(m, 2r_i) \) (H-sensors).
- \(n - m \) samples of \(\Lambda(n - m, a, h) \) (L-sensors)
\(M^2 P^2 \)

\(M^2 P^2(m, n, a, r_c, r_{ch}, r_i) \) on \(W \subset \mathbb{R}^2 \)

It is a compounded process consisting of:

- \(m \) samples of \(H(m, 2r_i) \) (H-sensors).
- \(n - m \) samples of \(\Lambda(n - m, a, h) \) (L-sensors)
H-sensors Deployment Model

\[H(m, 2r_i) \]

It places the maximum number of \(m \) H-sensors on a window \(W \) repulsed by an inhibition distance \(2r_i \). This process follows the SSI (Simple Sequential Inhibition) stochastic point process.
L-sensors Deployment Model

$\Lambda(n - m, a, h)$

An inhomogeneous Poisson process with intensity function defined as:

$$\lambda(x, y) = \begin{cases}
a, & \text{if } d((x, y), (hx_i, hy_i)) \leq r_c, 1 \leq i \leq m, \\
1, & \text{otherwise}
\end{cases}$$

where $a \geq 1$ (the attractiveness parameter), d is any distance measure, and r_c is the communication radius of the L-sensors.
Examples of M^2P^2

Outcomes of M^2P^2 for 300 nodes with 1, 10, 10 and 15 H-sensors (in black) and attractiveness 15, 5, 15 and 15
Evaluation of M^2P^2

- Small-world characterization and energy hole behavior
- H-sensors and L-sensors present same sensing capabilities (r_s) and two levels of transmission range (r_c and r_{ch}).
- H-sensors have a two-channel radio
- Each sensor sends 1 packet/min
- Each sensor reports its collected data by using a minimum cost path to the sink (not a fixed tree)
- An error- and a collision-free MAC protocol was used to isolate its influence
Evaluation of M^2P^2

- Small-world characterization and energy hole behavior
- H-sensors and L-sensors present same sensing capabilities (r_s) and two levels of transmission range (r_c and r_{ch}).
- H-sensors have a two-channel radio
- Each sensor sends 1 packet/min
- Each sensor reports its collected data by using a minimum cost path to the sink (not a fixed tree)
- An error- and a collision-free MAC protocol was used to isolate its influence
Evaluation of M^2P^2

- Small-world characterization and energy hole behavior
- H-sensors and L-sensors present same sensing capabilities (r_s) and two levels of transmission range (r_c and r_{ch}).
- H-sensors have a two-channel radio
 - Each sensor sends 1 packet/min
 - Each sensor reports its collected data by using a minimum cost path to the sink (not a fixed tree)
 - An error- and a collision-free MAC protocol was used to isolate its influence
Evaluation of M^2P^2

- Small-world characterization and energy hole behavior
- H-sensors and L-sensors present same sensing capabilities (r_s) and two levels of transmission range (r_c and r_{ch}).
- H-sensors have a two-channel radio
- Each sensor sends 1 packet/min
 - Each sensor reports its collected data by using a minimum cost path to the sink (not a fixed tree)
 - An error- and a collision-free MAC protocol was used to isolate its influence
Evaluation of M^2P^2

- Small-world characterization and energy hole behavior
- H-sensors and L-sensors present same sensing capabilities (r_s) and two levels of transmission range (r_c and r_{ch}).
- H-sensors have a two-channel radio
- Each sensor sends 1 packet/min
- Each sensor reports its collected data by using a minimum cost path to the sink (not a fixed tree)
- An error- and a collision-free MAC protocol was used to isolate its influence
Evaluation of M^2P^2

- Small-world characterization and energy hole behavior
- H-sensors and L-sensors present same sensing capabilities (r_s) and two levels of transmission range (r_c and r_{ch}).
- H-sensors have a two-channel radio
- Each sensor sends 1 packet/minute
- Each sensor reports its collected data by using a minimum cost path to the sink (not a fixed tree)
- An error- and a collision-free MAC protocol was used to isolate its influence
Simulation Scenarios

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>sink node</td>
<td>1 (center-most node)</td>
</tr>
<tr>
<td>network size</td>
<td>$n \in {1000, 1500, 2000}$ nodes</td>
</tr>
<tr>
<td>communication radius (L-sensors)</td>
<td>50 m</td>
</tr>
<tr>
<td>communication radius (H-sensors)</td>
<td>$r_{ch} \in {100, 300, 500}$ m</td>
</tr>
<tr>
<td>number of H-sensors</td>
<td>$m \in {1, 10, 30, 50}$ nodes</td>
</tr>
<tr>
<td>deployment model parameter</td>
<td>$a \in {0, 1, 5, 15, 30}$</td>
</tr>
<tr>
<td>event duration</td>
<td>1000 s</td>
</tr>
<tr>
<td>data rate</td>
<td>1 packet/min</td>
</tr>
<tr>
<td>sensing radius</td>
<td>30 m</td>
</tr>
<tr>
<td>sensor field</td>
<td>$1000 \times 1000 \text{ m}^2$</td>
</tr>
</tbody>
</table>
Assessed Topologies

1. **independent | independent** ($a = 0$): binomial deployment for both L-sensors and H-sensors, also called totally independent deployment

2. **independent | repulsive** ($a = 1$): binomial deployment for L-sensors and repulsive deployment for H-sensors

3. **slightly attractive | repulsive** ($a = 5$): slightly attractive deployment for L-sensors and repulsive deployment for H-sensors

4. **fairly attractive | repulsive** ($a = 15$): fairly attractive deployment for L-sensors and repulsive deployment for H-sensors

5. **strongly attractive | repulsive** ($a = 30$): strongly attractive deployment for L-sensors and repulsive deployment for H-sensors
Assessed Topologies

1. **independent | independent** ($a = 0$): binomial deployment for both L-sensors and H-sensors, also called totally independent deployment

2. **independent | repulsive** ($a = 1$): binomial deployment for L-sensors and repulsive deployment for H-sensors

3. **slightly attractive | repulsive** ($a = 5$): slightly attractive deployment for L-sensors and repulsive deployment for H-sensors

4. **fairly attractive | repulsive** ($a = 15$): fairly attractive deployment for L-sensors and repulsive deployment for H-sensors

5. **strongly attractive | repulsive** ($a = 30$): strongly attractive deployment for L-sensors and repulsive deployment for H-sensors
Assessed Topologies

1. **independent | independent** \((a = 0)\): binomial deployment for both L-sensors and H-sensors, also called totally independent deployment

2. **independent | repulsive** \((a = 1)\): binomial deployment for L-sensors and repulsive deployment for H-sensors

3. **slightly attractive | repulsive** \((a = 5)\): slightly attractive deployment for L-sensors and repulsive deployment for H-sensors

4. **fairly attractive | repulsive** \((a = 15)\): fairly attractive deployment for L-sensors and repulsive deployment for H-sensors

5. **strongly attractive | repulsive** \((a = 30)\): strongly attractive deployment for L-sensors and repulsive deployment for H-sensors
Assessed Topologies

1. **independent | independent** \((a = 0)\): binomial deployment for both L-sensors and H-sensors, also called totally independent deployment

2. **independent | repulsive** \((a = 1)\): binomial deployment for L-sensors and repulsive deployment for H-sensors

3. **slightly attractive | repulsive** \((a = 5)\): slightly attractive deployment for L-sensors and repulsive deployment for H-sensors

4. **fairly attractive | repulsive** \((a = 15)\): fairly attractive deployment for L-sensors and repulsive deployment for H-sensors

5. **strongly attractive | repulsive** \((a = 30)\): strongly attractive deployment for L-sensors and repulsive deployment for H-sensors
Assessed Topologies

1. **independent | independent** ($a = 0$): binomial deployment for both L-sensors and H-sensors, also called totally independent deployment

2. **independent | repulsive** ($a = 1$): binomial deployment for L-sensors and repulsive deployment for H-sensors

3. **slightly attractive | repulsive** ($a = 5$): slightly attractive deployment for L-sensors and repulsive deployment for H-sensors

4. **fairly attractive | repulsive** ($a = 15$): fairly attractive deployment for L-sensors and repulsive deployment for H-sensors

5. **strongly attractive | repulsive** ($a = 30$): strongly attractive deployment for L-sensors and repulsive deployment for H-sensors
Coverage and Connectivity

Legend:
- **independent | independent**
- **repulsive**
- **slightly attractive | repulsive**
- **fairly attractive | repulsive**
- **strongly attractive | repulsive**

Graph:
- **# of H−sensors**
- **Coverage**
- **# of H−sensors vs. Coverage**

Annotations:
- 500, 1000, 1500, 2000
- 0.2, 0.4, 0.6, 0.8, 1.0
- 0, 10, 20, 30, 40, 50
- 1000, 100
- 1500, 300
- 2000, 500

Key Points:
- Coverage varies with the number of H−sensors.
- Connectivity is affected by the interaction between sensors.
- Different interaction types yield distinct coverage patterns.

A Guide to Stochastic Planned Deployment
Coverage and Connectivity

<table>
<thead>
<tr>
<th># of H-sensors</th>
<th>Connectivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>1500</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- | independent |
- | repulsive |
- | fairly attractive |
- | repulsive |
- | strongly attractive |
- | repulsive |
Small World Effect

- A small world network is characterized by short path lengths as random graphs and relatively large clustering coefficient as regular lattice

- Good characteristics for:
 - information dissemination
 - fault tolerance
Small World Effect

- A small world network is characterized by short path lengths as random graphs and relatively large clustering coefficient as regular lattice
- Good characteristics for:
 - information dissemination
 - fault tolerance
Small World Effect

- A small world network is characterized by short path lengths as random graphs and relatively large clustering coefficient as regular lattice

- Good characteristics for:
 - information dissemination
 - fault tolerance
Small World Effect

- A small world network is characterized by short path lengths as random graphs and relatively large clustering coefficient as regular lattice
- Good characteristics for:
 - information dissemination
 - fault tolerance
Small World Effect

k-Regular

Small World

Random
Small world characterization

<table>
<thead>
<tr>
<th>Topology</th>
<th>\overline{CC}</th>
<th>$\hat{\sigma}_{CC}$</th>
<th>\overline{L}</th>
<th>$\hat{\sigma}_{L}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>slightly attractive</td>
<td>repulsive</td>
<td>0.658</td>
<td>0.009</td>
<td>6.313</td>
</tr>
<tr>
<td>independent</td>
<td>independent</td>
<td>0.584</td>
<td>0.005</td>
<td>8.205</td>
</tr>
<tr>
<td>homogeneous network</td>
<td>0.595</td>
<td>0.007</td>
<td>13.878</td>
<td>0.194</td>
</tr>
<tr>
<td>Erdös-Rényi random graph</td>
<td>0.011</td>
<td>0.001</td>
<td>2.848</td>
<td>0.006</td>
</tr>
</tbody>
</table>

1500 nodes. In the first two topologies, there are 30 H-sensors and $r_{ch} = 300$
Network Centrality

- In general, the more central the node is the more packets it will transmit (sink in the center)
- We study some centrality metrics that appear in the theory of complex networks and describe the centrality in different ways.
 - (i) Betweenness, (ii) eigenvector centrality, (iii) closeness, (iv) degree centrality, (v) Google page rank, (vi) constraints centrality, (vii) hubscore centrality, and (viii) authority centrality
- Betweenness appears as the metric that best describes the relay task
Network Centrality

- In general, the more central the node is the more packets it will transmit (sink in the center)
- We study some centrality metrics that appear in the theory of complex networks and describe the centrality in different ways.
 - (i) Betweenness, (ii) eigenvector centrality, (iii) closeness, (iv) degree centrality, (v) Google page rank, (vi) constraints centrality, (vii) hubscore centrality, and (viii) authority centrality
- Betweenness appears as the metric that best describes the relay task
Network Centrality

In general, the more central the node is the more packets it will transmit (sink in the center).

We study some centrality metrics that appear in the theory of complex networks and describe the centrality in different ways.

(i) Betweenness, (ii) eigenvector centrality, (iii) closeness, (iv) degree centrality, (v) Google page rank, (vi) constraints centrality, (vii) hubscore centrality, and (viii) authority centrality.

Betweenness appears as the metric that best describes the relay task.
Network Centrality

- In general, the more central the node is the more packets it will transmit (sink in the center)
- We study some centrality metrics that appear in the theory of complex networks and describe the centrality in different ways.
- (i) Betweenness, (ii) eigenvector centrality, (iii) closeness, (iv) degree centrality, (v) Google page rank, (vi) constraints centrality, (vii) hubscore centrality, and (viii) authority centrality
- Betweenness appears as the metric that best describes the relay task
Betweenness Centrality

Definitions

Betweenness

\[B_v = \sum_{s=1}^{n} \sum_{t=1}^{n} \frac{\sigma_{st}(v)}{\sigma_{st}}. \]

Sink-Betweenness

\[SB_v = \sum_{t=1}^{n} \frac{\sigma_{skt}(v)}{\sigma_{skt}}. \]
Network Centrality and Transmitted Messages

Sink in the center:

Sink in a corner:

Sink randomly placed:
Network Centrality and Transmitted Messages

Sink in the center:

Sink in a corner:

Sink randomly placed:
A Guide to Stochastic Planned Deployment

Parameters of $M^2P^2(m, n, a, r_c, r_{ch}, r_i)$ model:

- **Window** W where the process takes place
- Communication radii should be carefully specified as a function of the communication channel. This distance specifies r_c and r_{ch}
- Number (n) and type of sensors required for precise, lasting and economic data acquisition and delivery
- Inhibition parameter r_i, $r_i \geq r_c$ (areas of influence of H-sensors do not overlap) and $r_i < \ell/m^{1/2}$ (allows the placement of all the m H-sensors on the window $W = [0, \ell]^2$)
- Intensity parameter $a > 1$
- L-Sensors around each H-Sensor: $E(Z) = \frac{n-m}{m\left(\frac{1}{a}\left(\frac{\mu(W)}{\mu(W')} - 1\right) + 1\right)}$
A Guide to Stochastic Planned Deployment

Parameters of $M^2P^2(m, n, a, r_c, r_{ch}, r_i)$ model:

- Window W where the process takes place
- Communication radii should be carefully specified as a function of the communication channel. This distance specifies r_c and r_{ch}
- Number (n) and type of sensors required for precise, lasting and economic data acquisition and delivery
- Inhibition parameter r_i, $r_i \geq r_c$ (areas of influence of H-sensors do not overlap) and $r_i < \ell/m^{1/2}$ (allows the placement of all the m H-sensors on the window $W = [0, \ell]^2$)
- Intensity parameter $a > 1$
- L-Sensors around each H-Sensor: $E(Z) = \frac{n-m}{m \left(\frac{1}{a} \left(\frac{\mu(W)}{\mu(W')} - 1 \right) + 1 \right)}$
A Guide to Stochastic Planned Deployment

Parameters of $M^2P^2(m, n, a, r_c, r_{ch}, r_i)$ model:

- Window W where the process takes place
- Communication radii should be carefully specified as a function of the communication channel. This distance specifies r_c and r_{ch}
- Number (n) and type of sensors required for precise, lasting and economic data acquisition and delivery
- Inhibition parameter r_i, $r_i \geq r_c$ (areas of influence of H-sensors do not overlap) and $r_i < \ell/m^{1/2}$ (allows the placement of all the m H-sensors on the window $W = [0, \ell]^2$)
- Intensity parameter $a > 1$
- L-Sensors around each H-Sensor: $E(Z) = \frac{n-m}{m\left(\frac{1}{a}\left(\frac{\mu(W)}{\mu(W')} - 1\right) + 1\right)}$
A Guide to Stochastic Planned Deployment

Parameters of $M^2P^2(m, n, a, r_c, r_{ch}, r_i)$ model:

- **Window** W where the process takes place
- Communication radii should be carefully specified as a function of the communication channel. This distance specifies r_c and r_{ch}
- Number (n) and type of sensors required for precise, lasting and economic data acquisition and delivery
- Inhibition parameter r_i, $r_i \geq r_c$ (areas of influence of H-sensors do not overlap) and $r_i < \ell/m^{1/2}$ (allows the placement of all the m H-sensors on the window $W = [0, \ell]^2$)
- Intensity parameter $a > 1$
- L-Sensors around each H-Sensor: $E(Z) = \frac{n-m}{m\left(\frac{1}{a}\left(\frac{\mu(W)}{\mu(W')} - 1\right) + 1\right)}$
A Guide to Stochastic Planned Deployment

Parameters of $M^2P^2(m, n, a, r_c, r_{ch}, r_i)$ model:

- Window W where the process takes place
- Communication radii should be carefully specified as a function of the communication channel. This distance specifies r_c and r_{ch}
- Number (n) and type of sensors required for precise, lasting and economic data acquisition and delivery
- Inhibition parameter r_i, $r_i \geq r_c$ (areas of influence of H-sensors do not overlap) and $r_i < \ell/m^{1/2}$ (allows the placement of all the m H-sensors on the window $W = [0, \ell]^2$)
- Intensity parameter $a > 1$
- L-Sensors around each H-Sensor: $E(Z) = \frac{n-m}{m \left(\frac{1}{a} \left(\frac{\mu(W)}{\mu(W')} - 1 \right) + 1 \right)}$
A Guide to Stochastic Planned Deployment

Parameters of $M^2P^2(m, n, a, r_c, r_{ch}, r_i)$ model:

- Window W where the process takes place
- Communication radii should be carefully specified as a function of the communication channel. This distance specifies r_c and r_{ch}
- Number (n) and type of sensors required for precise, lasting and economic data acquisition and delivery
- Inhibition parameter $r_i, r_i \geq r_c$ (areas of influence of H-sensors do not overlap) and $r_i < \ell/m^{1/2}$ (allows the placement of all the m H-sensors on the window $W = [0, \ell]^2$)
- Intensity parameter $a > 1$
- L-Sensors around each H-Sensor: $E(Z) = \frac{n-m}{m \left(\frac{1}{a} \left(\frac{\mu(W)}{\mu(W')} - 1 \right) + 1 \right)}$
Two outcomes of network graphs generated by the M^2P^2 model

1000 nodes, 30 H-sensors, 1000 × 1000 sensor field, $r_c = 50$, $r_{ch} = 300$ and $a = 5$. $E(Z) = 19.6$ L-sensors.
Final Remarks

- We showed a novel modeling solution able to represent a wide variety of WSNs scenarios
- The common random deployment is a particular case of our model
- This model represents WSNs and HSNs showing characteristics of small world networks and can help to address the energy hole problem
- We only need about 3% of H-sensors (50 out of 1500) to obtain important features such as low average path length, and high cluster coefficient
- We propose the Sink Betweenness, a metric suitable to characterize the relay task of a node
- This work suggests other possibilities, such as the use of the Sink Betweenness in the design of HSNs and WSNs
Final Remarks

- We showed a novel modeling solution able to represent a wide variety of WSNs scenarios.
- The common random deployment is a particular case of our model.
- This model represents WSNs and HSNs showing characteristics of small world networks and can help to address the energy hole problem.
- We only need about 3% of H-sensors (50 out of 1500) to obtain important features such as low average path length, and high cluster coefficient.
- We propose the Sink Betweenness, a metric suitable to characterize the relay task of a node.
- This work suggests other possibilities, such as the use of the Sink Betweenness in the design of HSNs and WSNs.
Final Remarks

- We showed a novel modeling solution able to represent a wide variety of WSNs scenarios.
- The common random deployment is a particular case of our model.
- This model represents WSNs and HSNs showing characteristics of small world networks and can help to address the energy hole problem.
- We only need about 3% of H-sensors (50 out of 1500) to obtain important features such as low average path length, and high cluster coefficient.
- We propose the Sink Betweenness, a metric suitable to characterize the relay task of a node.
- This work suggests other possibilities, such as the use of the Sink Betweenness in the design of HSNs and WSNs.
Final Remarks

- We showed a novel modeling solution able to represent a wide variety of WSNs scenarios.
- The common random deployment is a particular case of our model.
- This model represents WSNs and HSNs showing characteristics of small world networks and can help to address the energy hole problem.
- We only need about 3% of H-sensors (50 out of 1500) to obtain important features such as low average path length, and high cluster coefficient.
- We propose the Sink Betweenness, a metric suitable to characterize the relay task of a node.
- This work suggests other possibilities, such as the use of the Sink Betweenness in the design of HSNs and WSNs.
Final Remarks

- We showed a novel modeling solution able to represent a wide variety of WSNs scenarios.
- The common random deployment is a particular case of our model.
- This model represents WSNs and HSNs showing characteristics of small world networks and can help to address the energy hole problem.
- We only need about 3% of H-sensors (50 out of 1500) to obtain important features such as low average path length, and high cluster coefficient.
- We propose the Sink Betweenness, a metric suitable to characterize the relay task of a node.
- This work suggests other possibilities, such as the use of the Sink Betweenness in the design of HSNs and WSNs.
Final Remarks

- We showed a novel modeling solution able to represent a wide variety of WSNs scenarios.
- The common random deployment is a particular case of our model.
- This model represents WSNs and HSNs showing characteristics of small world networks and can help to address the energy hole problem.
- We only need about 3% of H-sensors (50 out of 1500) to obtain important features such as low average path length, and high cluster coefficient.
- We propose the Sink Betweenness, a metric suitable to characterize the relay task of a node.
- This work suggests other possibilities, such as the use of the Sink Betweenness in the design of HSNs and WSNs.
Thank you!